Endomyocardial gene expression during development of pacing tachycardia-induced heart failure in the dog.

Author:

Williams R E1,Kass D A1,Kawagoe Y1,Pak P1,Tunin R S1,Shah R1,Hwang A1,Feldman A M1

Affiliation:

1. Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Md.

Abstract

Selective and specific changes in gene expression characterize the end-stage failing heart. However, the pattern and relation of these changes to evolving systolic and diastolic dysfunction during development of heart failure remains undefined. In the present study, we assessed steady-state levels of mRNAs encoding a group of cardiac proteins during the early development of left ventricular dysfunction in dogs with pacing-induced cardiomyopathy. Corresponding hemodynamic assessments were made in the conscious state in the same animals and at the same time points at baseline, after 1 week of ventricular pacing, and at the onset of clinical heart failure. Systolic dysfunction dominated after 1 week of pacing, whereas diastolic dysfunction was far more pronounced with the onset of heart failure. Atrial natriuretic factor mRNA was undetectable in 7 of 12 hearts at baseline but was expressed in all hearts at 1 week (P < .01 by chi 2 test), and it increased markedly with progression to failure (P = .05). Creatine kinase-B mRNA also rose markedly with heart failure (P < .01). Levels of mRNA encoding beta-myosin heavy chain, mitochondrial creatine kinase, phospholamban, and sarcoplasmic reticulum Ca(2+)-ATPase did not significantly change from baseline, despite development of heart failure. Additional analysis to determine if these mRNA changes were related to the severity of diastolic or systolic dysfunction revealed that phospholamban mRNA decreased in hearts with larger net increases in end-diastolic pressure (+19.2 +/- 1.9 mm Hg) compared with those hearts in which it did not change (+4.0 +/- 4.9, P < .02).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3