Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction.

Author:

Feldman A M1,Ray P E1,Silan C M1,Mercer J A1,Minobe W1,Bristow M R1

Affiliation:

1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md. 21205.

Abstract

BACKGROUND Evaluation of gene expression in failing human heart has been limited by the availability of cardiac tissue. METHODS AND RESULTS We used the polymerase chain reaction (PCR) to assess gene expression in small quantities of failing and nonfailing human heart. PCR is a powerful new molecular biological tool that allows a small quantity of DNA to be amplified as much as 1 million-fold. Total RNA was extracted from 3-5 mg samples of human heart and reverse-transcribed to complementary DNA (cDNA). With selected oligonucleotide primers, we used PCR to amplify cDNAs encoding atrial natriuretic peptide, beta-myosin heavy chain, phospholamban, and cytoskeletal beta-actin. To quantify the relative levels of messenger RNA (mRNA) in human heart, a known amount of a control RNA was present in the reverse transcription and PCR reactions. The amount of mRNA in the sample could therefore be assessed in relation to the amount of control product. The control RNA was transcribed from a synthetic DNA template containing primers complementary to those used to amplify the cDNAs of interest. Atrial natriuretic factor mRNA could not be detected in nonfailing human heart but was abundant in ventricular myocardium from failing human heart. In contrast, steady-state levels of phospholamban mRNA decreased, whereas levels of beta-myosin heavy-chain mRNA were unchanged with heart failure. CONCLUSIONS Alterations in gene expression in the failing human heart appear to be selective. In addition, the present study suggests that PCR provides a rapid and economical way to quantify the expression of multiple genes of interest in endomyocardial biopsy specimens and may therefore be used to advance our understanding of heart muscle disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3