Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.

Author:

Pertsov A M1,Davidenko J M1,Salomonsz R1,Baxter W T1,Jalife J1

Affiliation:

1. Department of Pharmacology, State University of New York Health Science Center, Syracuse 13210.

Abstract

The mechanism of reentrant ventricular tachycardia was studied in computer simulations and in thin (approximately 20 x 20 x 0.5-mm) slices of dog and sheep ventricular epicardial muscle. A two-dimensional matrix consisting of 96 x 96 electrically coupled cells modeled by the FitzHugh-Nagumo equations was used to analyze the dynamics of self-sustaining reentrant activity in the form of elliptical spiral waves induced by premature stimulation. In homogeneous anisotropic media, spirals are stationary and may last indefinitely. However, the presence of small parameter gradients may lead to drifting and eventual termination of the spiral at the boundary of the medium. On the other hand, spirals may anchor and rotate around small discontinuities within the matrix. Similar results were obtained experimentally in 10 preparations whose electrical activity was monitored by means of a potentiometric dye and high-resolution optical mapping techniques; premature stimulation triggered reproducible episodes of sustained or nonsustained reentrant tachycardia in the form of spiral waves. As a rule, the spirals were elongated, with the major hemiaxis parallel to the longitudinal axis of the cells. The period of rotation (183 +/- 68 msec [mean +/- SD]) was longer than the refractory period (131 +/- 38 msec) and appeared to be determined by the size of the spiral's core, which was measured using a newly devised "frame-stack" plot. Drifting of spiral waves was also observed experimentally. Drift velocity was 9.8% of the velocity of wave propagation. In some cases, the core became stationary by anchoring to small arteries or other heterogeneities, and the spiral rotated rhythmically for prolonged periods of time. Yet, when drift occurred, spatiotemporal variations in the excitation period were manifested as a result of a Doppler effect, with the excitation period ahead of the core being 20 +/- 6% shorter than the excitation period behind the core. As a result of these coexisting frequencies, a pseudoelectrocardiogram of the activity in the presence of a drifting spiral wave exhibited "QRS complexes" with an undulating axis, which resembled those observed in patients with torsade de pointes. The overall results show that spiral wave activity is a property of cardiac muscle and suggest that such activity may be the common mechanism of a number of monomorphic and polymorphic tachycardias.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference62 articles.

Cited by 518 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3