Excitable dynamics driven by mechanical feedback in biological tissues

Author:

Pérez-Verdugo FernandaORCID,Banks SamuelORCID,Banerjee ShiladityaORCID

Abstract

AbstractPulsatory activity patterns, driven by mechanochemical feedback, are prevalent in many biological systems. However, the role of cellular mechanics and geometry in the propagation of pulsatory signals remains poorly understood. Here we present a theoretical framework to elucidate the mechanical origin and regulation of pulsatile activity patterns within excitable multicellular tissues. We show that a simple mechanical feedback at the level of individual cells – activation of contractility upon stretch and subsequent inactivation upon turnover of active elements – is sufficient to explain the emergence of quiescent states, long-range wave propagation, and traveling activity pulse at the tissue-level. We find that the transition between a propagating pulse and a wave is driven by the competition between timescales associated with cellular mechanical response and geometrical disorder in the tissue. This sheds light on the fundamental role of cell packing geometry on tissue excitability and spatial propagation of activity patterns.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3