Myocyte Enhancer Binding Factor-2 Expression and Activity in Vascular Smooth Muscle Cells

Author:

Firulli Anthony B.1,Miano Joseph M.1,Bi Weizhen1,Johnson A. Daniel1,Casscells Ward1,Olson Eric N.1,Schwarz John J.1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology (A.B.F., J.M.M., E.N.O.), University of Texas M.D. Anderson Cancer Center, Houston; the Division of Cardiology (W.B., W.C, J.J.S.), Department of Internal Medicine, University of Texas Medical School, Houston; and the Texas Heart Institute (A.D.J., W.C.), Houston.

Abstract

Abstract Proliferation and phenotypic modulation of smooth muscle cells (SMCs) are major components of the vessel’s response to injury in experimental models of restenosis. Some of the growth factors involved in restenosis have been identified, but to date little is known about the transcription factors that ultimately regulate this process. We examined the expression of the four members of the myocyte enhancer binding factor-2 (MEF2) family of transcription factors in cultured rat aortic SMCs (RASMCs) and a rat model of restenosis because of their known importance in regulating the differentiated phenotype of skeletal and cardiac muscle. In skeletal and cardiac muscle, the MEF2s are believed to be important for activating the expression of contractile protein and other muscle-specific genes. Therefore, we anticipated that the MEF2s would be expressed at high levels in medial SMCs that are producing contractile proteins and that they would be downregulated along with the contractile protein genes in neointimal SMCs. On the contrary, we observe that MEF2A, MEF2B, and MEF2D mRNAs are upregulated in the neointima, with the highest levels in the layer of cells nearest to the lumen, whereas MEF2C mRNA levels do not appreciably increase. Moreover, few cells in the media are making MEF2 proteins detectable by immunohistochemistry, whereas large numbers of neointimal cells are positive for all four MEF2s. These data suggest that the MEF2s are involved in the activated smooth muscle phenotype and not in the maintenance of contractile protein gene expression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference54 articles.

1. Update on the biology and clinical study of restenosis

2. Vascular Smooth Muscle Cell Kinetics: a New Assay for Studying Patterns of Cellular Proliferation in Vivo

3. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury, I: smooth muscle growth in the absence of endothelium. Lab Invest. 1983;49:327-333.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3