Single-cell RNA sequencing reveals the developmental program underlying proximal–distal patterning of the human lung at the embryonic stage

Author:

Cao Shangtao,Feng Huijian,Yi Hongyan,Pan Mengjie,Lin Lihui,Zhang Yao Santo,Feng Ziyu,Liang Weifang,Cai Baomei,Li Qi,Xiong Zhi,Shen Qingmei,Ke Minjing,Zhao Xing,Chen Huilin,He Qina,Min Mingwei,Cai Quanyou,Liu He,Wang Jie,Pei DuanqingORCID,Chen JiekaiORCID,Ma Yanlin

Abstract

AbstractThe lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal–distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4–8 post fertilization (Carnegie stages 12–21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal–distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal–distal patterning in human lung development, opening up new avenues for regenerative medicine.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3