Cardiovascular autonomic modulation in essential hypertension. Effect of tilting.

Author:

Radaelli A1,Bernardi L1,Valle F1,Leuzzi S1,Salvucci F1,Pedrotti L1,Marchesi E1,Finardi G1,Sleight P1

Affiliation:

1. Department of Internal Medicine, First Medical Clinic, University of Pavia, Italy.

Abstract

To better understand the role played by the autonomic nervous system in essential hypertension, we used autoregressive power spectrum analysis to study the noncasual oscillations in RR interval, blood pressure, and skin blood flow in 40 subjects with mild to moderate hypertension and in 25 age-matched control subjects at low frequency (index of sympathetic activity to the heart and the peripheral circulation) and high frequency, respiratory related (index of vagal tone to the heart). RR interval, respiration, noninvasive systolic blood pressure, and skin arteriolar blood flow were simultaneously and continuously recorded with subjects in the supine position and immediately after tilting. The low-frequency component was not significantly different in the two groups either at the cardiac level (control versus hypertensive subjects: 39.1 +/- 4.3 versus 39.9 +/- 3.7 normalized units [NU]) or at the vascular level (1.52 +/- 0.17 versus 1.69 +/- 0.13 ln mm Hg2). After head-up tilting, the RR interval fluctuations were less in hypertensive subjects (low-frequency components from 39.9 +/- 3.7 to 48.4 +/- 4.1 NU, P < .05; high-frequency components from 53.9 +/- 3.7 to 44 +/- 4 NU, P < .05) than in control subjects (low-frequency components from 39.1 +/- 4.3 to 64.4 +/- 4.9 NU, P < .001; high-frequency components from 56.0 +/- 4.5 to 31.2 +/- 4.6 NU, P < .001); the low-frequency components in systolic blood pressure increased similarly in hypertensive subjects (to 2.43 +/- 0.17 ln mm Hg2, P < .0001) and in control subjects (to 2.44 +/- 0.21 ln mm Hg2, P < .01), but the low-frequency components in skin blood flow increased only in control subjects (from 5.34 +/- 0.45 to 6.55 +/- 0.53 mm Hg2, P < .01), not in hypertensive subjects (from 5.55 +/- 0.34 to 5.60 +/- 0.35 ln mm Hg2). In hypertensive subjects with left ventricular hypertrophy, the low-frequency components in systolic blood pressure did not increase after tilting (from 1.75 +/- 0.33 to 2.05 +/- 0.41 ln mm Hg2). Baroreflex sensitivity, as assessed by spectrum analysis, was significantly lower in hypertensive than in control subjects (5.17 +/- 0.49 versus 13.18 +/- 2.44 ms/mm Hg, P < .001. Power spectrum analysis did not reveal an increased sympathetic activity or reactivity either at the cardiac or at the vascular level. The decreased baroreceptor sensitivity in hypertensive subjects could explain the reduced change in sympathovagal balance in the tilt position at the cardiac level. In hypertensive subjects without left ventricular hypertrophy, cardiopulmonary reflex deactivation induced by tilting and/or amplification of sympathetic nervous tone by arteriolar structural change could have preserved the sympathetic activation at the vascular level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference53 articles.

1. Mancia G Mark AL. Arterial baroreflexes in humans. In: Shepherd JT Abboud FM eds. Handbook of Physiology Section 2: The Cardiovascular System. Bethesda Md: American Physiological Society; 1983;3:755-793.

2. Karemaker JM. Neurophysiology of the baroreceptor reflex. In: Kitney RI Rompelman O eds. The Beat to Beat Investigation of Cardiovascular Function. 1st ed. New York NY: Oxford University Press; 1987.

3. Cardiovascular reflexes and hypertension;Zanchetti A;Hypertension.,1991

4. Role of the baroreceptor reflexes in circulatory control, with particular reference to hypertension;Sleight P;Hypertension.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3