Information-Domain Analysis of Cardiovascular Complexity: Night and Day Modulations of Entropy and the Effects of Hypertension

Author:

Castiglioni PaoloORCID,Parati Gianfranco,Faini AndreaORCID

Abstract

Multiscale entropy (MSE) provides information-domain measures of the systems’ complexity. The increasing interest in MSE of the cardiovascular system lies in the possibility of detecting interactions with other regulatory systems, as higher neural networks. However, most of the MSE studies considered the heart-rate (HR) series only and a limited number of scales: actually, an integrated approach investigating HR and blood-pressure (BP) entropies and cross-entropy over the range of scales of traditional spectral analyses is missing. Therefore, we aim to highlight influences of higher brain centers and of the autonomic control on multiscale entropy and cross-entropy of HR and BP over a broad range of scales, by comparing different behavioral states over 24 h and by evaluating the influence of hypertension, which reduces the autonomic control of BP. From 24-h BP recordings in eight normotensive and eight hypertensive participants, we selected subperiods during daytime activities and nighttime sleep. In each subperiod, we derived a series of 16,384 consecutive beats for systolic BP (SBP), diastolic BP (DBP), and pulse interval (PI). We applied a modified MSE method to obtain robust estimates up to time scales of 334 s, covering the traditional frequency bands of spectral analysis, for three embedding dimensions and compared groups (rank-sum test) and conditions (signed-rank test) at each scale. Results demonstrated night-and-day differences at scales associable with modulations in vagal activity, in respiratory mechanics, and in local vascular regulation, and reduced SBP-PI cross-entropy in hypertension, possibly representing a loss of complexity due to an impaired baroreflex sensitivity.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3