Affiliation:
1. Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children’s Healthcare of Atlanta Atlanta GA
2. Biomolecular Chemistry Department of Chemistry Emory University Atlanta GA
3. School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA
4. Department of Medicine & Winship Cancer Institute Emory University School of Medicine Atlanta GA
5. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
Abstract
Background
Anticancer therapies have significantly improved patient outcomes; however, cardiac side effects from cancer therapies remain a significant challenge. Cardiotoxicity following treatment with proteasome inhibitors such as carfilzomib is known in clinical settings, but the underlying mechanisms have not been fully elucidated.
Methods and Results
Using human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) as a cell model for drug‐induced cytotoxicity in combination with traction force microscopy, functional assessments, high‐throughput imaging, and comprehensive omic analyses, we examined the molecular mechanisms involved in structural and functional alterations induced by carfilzomib in hiPSC‐CMs. Following the treatment of hiPSC‐CMs with carfilzomib at 0.01 to 10 µmol/L, we observed a concentration‐dependent increase in carfilzomib‐induced toxicity and corresponding morphological, structural, and functional changes. Carfilzomib treatment reduced mitochondrial membrane potential, ATP production, and mitochondrial oxidative respiration and increased mitochondrial oxidative stress. In addition, carfilzomib treatment affected contractility of hiPSC‐CMs in 3‐dimensional microtissues. At a single cell level, carfilzomib treatment impaired Ca
2+
transients and reduced integrin‐mediated traction forces as detected by piconewton tension sensors. Transcriptomic and proteomic analyses revealed that carfilzomib treatment downregulated the expression of genes involved in extracellular matrices, integrin complex, and cardiac contraction, and upregulated stress responsive proteins including heat shock proteins.
Conclusions
Carfilzomib treatment causes deleterious changes in cellular and functional characteristics of hiPSC‐CMs. Insights into these changes could be gained from the changes in the expression of genes and proteins identified from our omic analyses.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献