Recombinant Interleukin‐19 Suppresses the Formation and Progression of Experimental Abdominal Aortic Aneurysms

Author:

Tanaka Hiroki12,Xu Baohui1ORCID,Xuan Haojun1,Ge Yingbin3ORCID,Wang Yan4,Li Yankui1ORCID,Wang Wei5ORCID,Guo Jia1,Zhao Sihai1,Glover Keith J.1,Zheng Xiaoya1,Liu Shuai5,Inuzuka Kazunori2,Fujimura Naoki1,Furusho Yuko1ORCID,Ikezoe Toru1,Shoji Takahiro1ORCID,Wang Lixin6,Fu Weiguo6,Huang Jianhua5,Unno Naoki2,Dalman Ronald L.1

Affiliation:

1. Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA

2. Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan

3. Department of Physiology Nanjing Medical University Nanjing Jiangsu China

4. Peking University Third HospitalMedical Research Center Haidian Beijing China

5. Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China

6. Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China

Abstract

Background Interleukin‐19 is an immunosuppressive cytokine produced by immune and nonimmune cells, but its role in abdominal aortic aneurysm (AAA) pathogenesis is not known. This study aimed to investigate interleukin‐19 expression in, and influences on, the formation and progression of experimental AAAs. Methods and Results Human specimens were obtained at aneurysm repair surgery or from transplant donors. Experimental AAAs were created in 10‐ to 12‐week‐old male mice via intra‐aortic elastase infusion. Influence and potential mechanisms of interleukin‐19 treatment on AAAs were assessed via ultrasonography, histopathology, flow cytometry, and gene expression profiling. Immunohistochemistry revealed augmented interleukin‐19 expression in both human and experimental AAAs. In mice, interleukin‐19 treatment before AAA initiation via elastase infusion suppressed aneurysm formation and progression, with attenuation of medial elastin degradation, smooth‐muscle depletion, leukocyte infiltration, neoangiogenesis, and matrix metalloproteinase 2 and 9 expression. Initiation of interleukin‐19 treatment after AAA creation limited further aneurysmal degeneration. In additional experiments, interleukin‐19 treatment inhibited murine macrophage recruitment following intraperitoneal thioglycolate injection. In classically or alternatively activated macrophages in vitro, interleukin‐19 downregulated mRNA expression of inducible nitric oxide synthase, chemokine C‐C motif ligand 2, and metalloproteinases 2 and 9 without apparent effect on cytokine‐expressing helper or cytotoxic T‐cell differentiation, nor regulatory T cellularity, in the aneurysmal aorta or spleen of interleukin‐19–treated mice. Interleukin‐19 also suppressed AAAs created via angiotensin II infusion in hyperlipidemic mice. Conclusions Based on human evidence and experimental modeling observations, interleukin‐19 may influence the development and progression of AAAs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3