Bone Marrow–Derived Monocyte Chemoattractant Protein-1 Receptor CCR2 Is Critical in Angiotensin II–Induced Acceleration of Atherosclerosis and Aneurysm Formation in Hypercholesterolemic Mice

Author:

Ishibashi Minako1,Egashira Kensuke1,Zhao Qingwei1,Hiasa Ken-ichi1,Ohtani Kisho1,Ihara Yoshiko1,Charo Israel F.1,Kura Shinobu1,Tsuzuki Teruhisa1,Takeshita Akira1,Sunagawa Kenji1

Affiliation:

1. From the Department of Cardiovascular Medicine (M.I., K.E., Q.Z., K.H., K.O., Y.I., A.T., K.S.) and the Department of Medical Biophysics and Radiation Biology (S.K., T.T.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and the Gladstone Institute of Cardiovascular Disease (I.F.C.), San Francisco, Calif.

Abstract

Angiotensin II (Ang II) is implicated in atherogenesis by activating inflammatory responses in arterial wall cells. Ang II accelerates the atherosclerotic process in hyperlipidemic apoE−/− mice by recruiting and activating monocytes. Monocyte chemoattractant protein-1 (MCP-1) controls monocyte-mediated inflammation through its receptor, CCR2. The roles of leukocyte-derived CCR2 in the Ang II-induced acceleration of the atherosclerotic process, however, are not known. We hypothesized that deficiency of leukocyte-derived CCR2 suppresses Ang II-induced atherosclerosis. Methods and Results— A bone marrow transplantation technique (BMT) was used to develop apoE−/− mice with and without deficiency of CCR2 in leukocytes (BMT-apoE−/−CCR2+/+ and BMT-apoE−/−CCR2−/− mice). Compared with BMT-apoE−/−CCR2+/+ mice, Ang II-induced increases in atherosclerosis plaque size and abdominal aortic aneurysm formation were suppressed in BMT-apoE−/−CCR2−/− mice. This suppression was associated with a marked decrease in monocyte-mediated inflammation and inflammatory cytokine expression. Conclusion— Leukocyte-derived CCR2 is critical in Ang II-induced atherosclerosis and abdominal aneurysm formation. The present data suggest that vascular inflammation mediated by CCR2 in leukocytes is a reasonable target of therapy for treatment of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3