Affiliation:
1. From the Departments of Pathology (O.T.) and Medicine (B.C.B.), Division of Cardiology, The University of Washington, Seattle.
Abstract
Abstract
—Mechanical forces are important modulators of cellular function in many tissues and are particularly important in the cardiovascular system. The endothelium, by virtue of its unique location in the vessel wall, responds rapidly and sensitively to the mechanical conditions created by blood flow and the cardiac cycle. In this study, we examine data which suggest that steady laminar shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. We explore the ability of shear stress to modulate atherogenesis via its effects on endothelial-mediated alterations in coagulation, leukocyte and monocyte migration, smooth muscle growth, lipoprotein uptake and metabolism, and endothelial cell survival. We also propose a model of signal transduction for the endothelial cell response to shear stress including possible mechanotransducers (integrins, caveolae, ion channels, and G proteins), intermediate signaling molecules (c-Src, ras, Raf, protein kinase C) and the mitogen activated protein kinases (ERK1/2, JNK, p38, BMK-1), and effector molecules (nitric oxide). The endothelial cell response to shear stress may also provide a mechanism by which risk factors such as hypertension, diabetes, hypercholesterolemia, and sedentary lifestyle act to promote atherosclerosis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
929 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献