Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ

Author:

Helmlinger G.1,Berk B. C.1,Nerem R. M.1

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology,Atlanta 30332-0405, USA.

Abstract

The vascular endothelium is the primary transducer of hemodynamically imposed mechanochemical events. In this study, we measured the intracellular free calcium concentration ([Ca2+]i) using the fluorescent probe fura 2 and ratiometric digital imaging in cultured bovine aortic endothelial cells (BAEC) subjected to various laminar flow patterns. These were steady shear stress (0.2-70 dyn/cm2) and three types of sinusoidal pulsatile shear stress (nonreversing: 40 +/- 20 dyn/cm2; reversing: 20 +/- 40 dyn/cm2; and purely oscillatory: 0 +/- 20 dyn/cm2; flow frequencies: 0.4, 1.0, and 2.0 Hz) in a serum-containing medium. The most dramatic finding was failure of a purely oscillatory flow to increase [Ca2+]i in BAEC monolayers. In contrast, steady flow, as well as nonreversing and reversing pulsatile flows, increased [Ca2+]i. The dynamics of the response were dependent on the flow pattern. Both internal Ca2+ release and extracellular Ca2+ entry were involved in these [Ca2+]i increases. Also, switching from either a steady nonreversing pulsatile or reversing pulsatile flow back to a static condition resulted in a [Ca2+]i increase. However, switching from an oscillatory flow to a static condition did not induce any changes in average [Ca2+]i. This study shows that endothelial cells are able to sense different flow environments in terms of [Ca2+]i signaling and is relevant to further studies of the influence of hemodynamic forces on vascular pathophysiology.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3