Fibronectin and Collagen I Matrixes Promote Calcification of Vascular Cells in Vitro, Whereas Collagen IV Matrix Is Inhibitory

Author:

Watson Karol E.1,Parhami Farhad1,Shin Victoria1,Demer Linda L.1

Affiliation:

1. From the Division of Cardiology, Departments of Medicine and Physiology, UCLA School of Medicine, Los Angeles, Calif.

Abstract

Abstract —Vascular calcification is a frequent component of atherosclerosis, yet the pathological mechanisms that regulate its formation are poorly understood. Calcification of the vessel wall may represent a process by which cells that normally exhibit a smooth muscle phenotype differentiate into cells that exhibit an osteoblast-like phenotype. One of the determinants of cellular phenotype is extracellular matrix; thus, we undertook the current study to evaluate the influence of extracellular matrix on calcification of vascular cells in vitro. Cell lines derived from bovine aortic media were divided into 1 of 3 groups: those that did not mineralize, those that mineralized slowly, or those that mineralized rapidly. When slowly mineralizing cells were plated onto matrix produced by rapidly mineralizing cells, the time required for mineralization decreased from 33±3.0 days to 7.8±1.3 days. Matrix produced by rapidly mineralizing cells was found to contain 3 times the amount of collagen I and fibronectin but 70% less collagen IV than nonmineralizing clones. When slowly mineralizing cells were cultured on purified collagen I or fibronectin, mineralized nodule formation, calcium incorporation, von Kossa staining, and alkaline phosphatase activity increased. In contrast, culturing slowly mineralizing cells on purified collagen IV inhibited these mineralization parameters. Furthermore, blocking antibodies to α5 integrins significantly inhibited the fibronectin-mediated increases in alkaline phosphatase activity, indicating that integrin-based signaling may be involved. These data suggest that matrix composition can regulate development of arterial calcification and that a subpopulation of vascular cells preferentially produces positively regulating matrix components.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3