Lipoprotein(a) Assembly

Author:

Gabel Brent R.1,May Lorraine F.1,Marcovina Santica M.1,Koschinsky Marlys L.1

Affiliation:

1. the Department of Biochemistry, Queen's University, Kingston, Ontario, Canada (B.R.G., L.F.M., M.L.K.), and the Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle (S.M.M.).

Abstract

We have developed a system for the quantitative assessment of the efficiency of lipoprotein(a) [Lp(a)] formation in vitro. Amino-terminally truncated derivatives of a 17-kringle form of recombinant apo(a) [r-apo(a)] were transiently expressed in human embryonic kidney cells. Equimolar amounts of r-apo(a) derivatives were incubated with a fourfold molar excess of purified human low density lipoprotein, and r-Lp(a) formation was assessed by densitometric analysis of Western blots. Although r-Lp(a) formation was observed with each r-apo(a) derivative, both the rate and extent of particle formation were greatly lower on removal of kringle IV type 7. Additional substantial decreases in these parameters were observed on removal of kringle IV type 8, thereby suggesting a major role for these two kringles in Lp(a) assembly. We directly demonstrated that the lysine-binding sites (LBSs) within kringle IV types 5-9 are “masked” in the context of the Lp(a) particle and are consequently unavailable for interaction with lysine-Sepharose. Using site-directed mutagenesis, we also demonstrated that the previously described LBS in kringle IV type 10 is not required for r-Lp(a) formation: r-Lp(a) formation using a mutated form of apo(a) that lacks this LBS is comparable in efficiency to that of wild-type r-apo(a) and can be inhibited to a similar extent by ε-amino- n -caproic acid. In summary, the results of our study indicate that apo(a) kringle IV types 7 and 8 are required for maximal efficiency of Lp(a) formation, likely by virtue of their ability to mediate lysine-dependent noncovalent interactions with apoB-100 that precede disulfide bond formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3