Effect of Advanced Glycation End Product–Modified Albumin on Tissue Factor Expression by Monocytes

Author:

Khechai F.1,Ollivier V.1,Bridey F.1,Amar M.1,Hakim J.1,de Prost D.1

Affiliation:

1. From INSERM U294 and Service d’Hématologie et d’Immunologie biologiques, CHU Xavier Bichat, Paris, France.

Abstract

Abstract Diabetes is associated with a hypercoagulable state that contributes to macrovascular complications, including cardiovascular events. The glycation reaction, a consequence of chronic hyperglycemia, has also been implicated in the pathogenesis of diabetic complications. Glycated proteins have receptors on monocytes and generate reactive oxygen species that can regulate the expression of a number of genes. As abnormal monocyte expression of tissue factor (TF), the main initiator of the coagulation cascade, is responsible for thrombosis in a number of clinical settings, we studied the effect of glycated albumin on monocyte TF expression. Mononuclear cells were incubated with glycated albumin for 24 hours, and monocyte TF activity was measured with a plasma recalcification time assay; TF antigen was measured by ELISA and TF mRNA by RT-PCR. Glycated albumin induced blood monocyte expression of the procoagulant protein TF at the mRNA level. Oxidative stress appeared to be involved in this effect, as the antioxidant N -acetylcysteine diminished TF mRNA accumulation in stimulated monocytes. Hydroxyl radicals, which may be generated inside cells from H 2 O 2 via the Fenton reaction, also appeared to be involved in this effect, as hydroxyl radical scavengers downregulated TF activity and antigen levels (but not TF mRNA). Finally, the involvement of activated protein tyrosine kinase in the transmission of the signal from the membrane to the nucleus was suggested by the inhibitory effect of herbimycin A. These results point to a new mechanism for the hypercoagulability often described in diabetic patients and suggest that antioxidants or protein tyrosine kinase inhibitors might be of therapeutic value in this setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3