Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage receptor for glucose-modified proteins.

Author:

Yang Z1,Makita Z1,Horii Y1,Brunelle S1,Cerami A1,Sehajpal P1,Suthanthiran M1,Vlassara H1

Affiliation:

1. Laboratory of Medical Biochemistry, Rockefeller University, New York, New York.

Abstract

Advanced glycosylation endproducts (AGEs), the glucose-derived adducts that form nonenzymatically and accumulate on tissue proteins, are implicated in many chronic complications associated with diabetes and aging. We have previously described a monocyte/macrophage surface receptor system thought to coordinate AGE protein removal and tissue remodeling, and purified a corresponding 90-kD AGE-binding protein from the murine RAW 264.7 cell line. To identify AGE-binding proteins in normal animals, the tissue distribution of 125I-AGE rat serum albumin taken up from the blood was determined in rats in vivo. These uptake studies demonstrated that the liver was a major site of AGE protein sequestration. Using a solid-phase assay system involving the immobilization of solubilized membrane proteins onto nitrocellulose to monitor binding activity, and several purification steps including affinity chromatography over an AGE bovine serum albumin matrix, two rat liver membrane proteins were isolated that specifically bound AGEs, one migrating at 60 kD (p60) and the other at 90 kD (p90) on SDS-PAGE. NH2-terminal sequence analysis revealed no significant homology between these two proteins nor to any molecules available in sequence databases. Flow cytometric analyses using avian antibodies to purified rat p60 and p90 demonstrated that both proteins are present on rat monocytes and macrophages. Competition studies revealed no crossreactivity between the two antisera; anti-p60 and anti-p90 antisera prevented AGE-protein binding to rat macrophages when added alone or in combination. These results indicate that rat liver contains at least two novel and distinct proteins that recognize AGE-modified macromolecules, although p90 may be related to the previously described 90-kD AGE receptor isolated from RAW 264.7 cells. The constitutive expression of AGE-binding proteins on rat monocytes and macrophages, and the sequestration of circulating AGE-modified proteins by the liver, provides further evidence in support of a role for these molecules in the normal removal of proteins marked as senescent by accumulated glucose-derived covalent addition products, or AGEs.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3