The Transcription Factor GATA-6 Regulates Pathological Cardiac Hypertrophy

Author:

van Berlo Jop H.1,Elrod John W.1,van den Hoogenhof Maarten M.G.1,York Allen J.1,Aronow Bruce J.1,Duncan Stephen A.1,Molkentin Jeffery D.1

Affiliation:

1. From the Department of Pediatrics, Division of Molecular Cardiovascular Biology (J.H.v.B., J.W.E., M.M.G.v.d.H., A.J.Y., B.J.A., J.D.M.); and the Howard Hughes Medical Institute (J.D.M.), University of Cincinnati, Cincinnati Children's Hospital Medical Center, Ohio; and Department of Cell Biology, Neurobiology and Anatomy (S.A.D.), Medical College of Wisconsin, Milwaukee.

Abstract

Rationale: The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger–containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective: To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results: Here, we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6 , as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, whereas deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with >95% loss of GATA-6 protein in the heart. These latter mice were subjected to pressure overload–induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6 -deleted mice subjected to pressure overload also developed heart failure, whereas control mice maintained proper cardiac function. Gata6 -deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation–specific genes. Conclusions: These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3