Uncovering the Heterogeneity of Cardiac Lin−KIT+ Cells: A scRNA-seq Study on the Identification of Subpopulations

Author:

Shen Yan1,Kim Il-Man2,Tang Yaoliang1ORCID

Affiliation:

1. Department of Medicine, Medical College of Georgia, Augusta University , Augusta, GA , USA

2. Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University , Indianapolis, IN , USA

Abstract

Abstract The reparative potential of cardiac Lin–KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.

Funder

American Heart Association

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference67 articles.

1. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium;Murry,1986

2. Mortality from ischemic heart disease;Nowbar,2019

3. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair;Simões,2020

4. Mechanisms of cell therapy for clinical investigations: an urgent need for large-animal models;Zhang,2013

5. Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart;Smith,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3