Sympathetic Stimulation of Adult Cardiomyocytes Requires Association of AKAP5 With a Subpopulation of L-Type Calcium Channels

Author:

Nichols C. Blake1,Rossow Charles F.1,Navedo Manuel F.1,Westenbroek Ruth E.1,Catterall William A.1,Santana Luis F.1,McKnight G. Stanley1

Affiliation:

1. From the Departments of Pharmacology (C.B.N., R.E.W., W.A.C., G.S.M.) and Physiology & Biophysics (C.F.R., M.F.N., L.F.S.), University of Washington, Seattle.

Abstract

Rationale: Sympathetic stimulation of the heart increases the force of contraction and rate of ventricular relaxation by triggering protein kinase (PK)A-dependent phosphorylation of proteins that regulate intracellular calcium. We hypothesized that scaffolding of cAMP signaling complexes by AKAP5 is required for efficient sympathetic stimulation of calcium transients. Objective: We examined the function of AKAP5 in the β-adrenergic signaling cascade. Methods and Results: We used calcium imaging and electrophysiology to examine the sympathetic response of cardiomyocytes isolated from wild type and AKAP5 mutant animals. The β-adrenergic regulation of calcium transients and the phosphorylation of substrates involved in calcium handling were disrupted in AKAP5 knockout cardiomyocytes. The scaffolding protein, AKAP5 (also called AKAP150/79), targets adenylyl cyclase, PKA, and calcineurin to a caveolin 3–associated complex in ventricular myocytes that also binds a unique subpopulation of Ca v 1.2 L-type calcium channels. Only the caveolin 3–associated Ca v 1.2 channels are phosphorylated by PKA in response to sympathetic stimulation in wild-type heart. However, in the AKAP5 knockout heart, the organization of this signaling complex is disrupted, adenylyl cyclase 5/6 no longer associates with caveolin 3 in the T-tubules, and noncaveolin 3–associated calcium channels become phosphorylated after β-adrenergic stimulation, although this does not lead to an enhanced calcium transient. The signaling domain created by AKAP5 is also essential for the PKA-dependent phosphorylation of ryanodine receptors and phospholamban. Conclusions: These findings identify an AKAP5-organized signaling module that is associated with caveolin 3 and is essential for sympathetic stimulation of the calcium transient in adult heart cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3