CIRKIL Exacerbates Cardiac Ischemia/Reperfusion Injury by Interacting With Ku70

Author:

Xiao Hongwen1,Zhang Mingyu1,Wu Hao12,Wu Jiaxu1,Hu Xiaoxi1,Pei Xinyu1,Li Danyang12,Zhao Lu1,Hua Qi12,Meng Bo1,Zhang Xiaowen1,Peng Lili1,Cheng Xiaoling3,Li Zhuoyun1,Yang Wanqi1,Zhang Qi1,Zhang Yang1,Lu Yanjie12,Pan Zhenwei1ORCID

Affiliation:

1. Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.), Harbin Medical University, P.R. China.

2. College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences (H.W., D.L., Q.H., Y.L.), Harbin Medical University, P.R. China.

3. Department of Medicinal Chemistry (X.C.), Harbin Medical University, P.R. China.

Abstract

Background: Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. Methods: CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. Results: The expression of CIRKIL was increased in I/R myocardium and H 2 O 2 -treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH 2 A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H 2 O 2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. Conclusions: CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3