Mff‐Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury via Induction of mROS‐Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation‐Involved mPTP Opening

Author:

Zhou Hao1,Hu Shunying1,Jin Qinhua1,Shi Chen2,Zhang Ying1,Zhu Pingjun1,Ma Qiang1,Tian Feng1,Chen Yundai1

Affiliation:

1. Department of Cardiology, Chinese PLA General Hospital, Beijing, China

2. Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China

Abstract

Background The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse. Methods and Results In wild‐type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular ischemia/reperfusion injury. Compared with wild‐type mice, homozygous Mff‐deficient (Mff gt ) mice exhibited a smaller infarcted area, restored cardiac function, improved blood flow, and reduced microcirculation perfusion defects. Histopathology analysis demonstrated that cardiac microcirculation endothelial cells ( CMECs ) in Mff gt mice had an intact endothelial barrier, recovered phospho‐endothelial nitric oxide synthase production, opened lumen, undivided mitochondrial structures, and less CMEC death. In vitro, Mff‐deficient CMEC s (derived from Mff gt mice or Mff small interfering RNA–treated) demonstrated less mitochondrial fission and mitochondrial‐dependent apoptosis compared with cells derived from wild‐type mice. The loss of Mff inhibited mitochondrial permeability transition pore opening via blocking the oligomerization of voltage‐dependent anion channel 1 and subsequent hexokinase 2 separation from mitochondria. Moreover, Mff deficiency reduced the cyt‐c leakage into the cytoplasm by alleviating cardiolipin oxidation resulting from damage to the electron transport chain complexes and mitochondrial reactive oxygen species overproduction. Conclusions This evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff‐dependent mitochondrial fission via voltage‐dependent anion channel 1/hexokinase 2–mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt‐c release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3