Activation of Na + /H + Exchanger 1 Is Sufficient to Generate Ca 2+ Signals That Induce Cardiac Hypertrophy and Heart Failure

Author:

Nakamura Tomoe Y.1,Iwata Yuko1,Arai Yuji1,Komamura Kazuo1,Wakabayashi Shigeo1

Affiliation:

1. From the Departments of Molecular Physiology (T.Y.N., Y.I., S.W.), Bioscience (Y.A.), and Cardiovascular Dynamics (K.K.), National Cardiovascular Center Research Institute, Osaka, Japan.

Abstract

Activation of the sarcolemmal Na + /H + exchanger (NHE)1 is increasingly documented as a process involved in cardiac hypertrophy and heart failure. However, whether NHE1 activation alone is sufficient to induce such remodeling remains unknown. We generated transgenic mice that overexpress a human NHE1 with high activity in hearts. The hearts of these mice developed cardiac hypertrophy, contractile dysfunction, and heart failure. In isolated transgenic myocytes, intracellular pH was elevated in Hepes buffer but not in physiological bicarbonate buffer, yet intracellular Na + concentrations were higher under both conditions. In addition, both diastolic and systolic Ca 2+ levels were increased as a consequence of Na + -induced Ca 2+ overload; this was accompanied by enhanced sarcoplasmic reticulum Ca 2+ loading via Ca 2+ /calmodulin-dependent protein kinase (CaMK)II-dependent phosphorylation of phospholamban. Negative force–frequency dependence was observed with preservation of high Ca 2+ , suggesting a decrease in myofibril Ca 2+ sensitivity. Furthermore, the Ca 2+ -dependent prohypertrophic molecules calcineurin and CaMKII were highly activated in transgenic hearts. These effects observed in vivo and in vitro were largely prevented by the NHE1 inhibitor cariporide. Interestingly, overexpression of NHE1 in neonatal rat ventricular myocytes induced cariporide-sensitive nuclear translocation of NFAT (nuclear factor of activated T cells) and nuclear export of histone deacetylase 4, suggesting that increased Na + /H + exchange activity can alter hypertrophy-associated gene expression. However, in transgenic myocytes, contrary to exclusive translocation of histone deacetylase 4, NFAT only partially translocated to nucleus, possibly because of marked activation of p38, a negative regulator of NFAT signaling. We conclude that activation of NHE1 is sufficient to initiate cardiac hypertrophy and heart failure mainly through activation of CaMKII–histone deacetylase pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3