Experimental, Systems, and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell–Derived Exosomes From Pediatric Patients

Author:

Agarwal Udit1,George Alex1,Bhutani Srishti1,Ghosh-Choudhary Shohini1,Maxwell Joshua T.1,Brown Milton E.1,Mehta Yash1,Platt Manu O.1,Liang Yaxuan1,Sahoo Susmita1,Davis Michael E.1

Affiliation:

1. From the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (U.A., A.G., S.B., S.G.-C., J.T.M., M.E.B., Y.M., M.O.P., M.E.D.); Division of Cardiology, Emory University School of Medicine, Atlanta, GA (U.A., J.T.M., M.E.B., M.E.D.); Children’s Heart Research and Outcomes Center, Emory University School of Medicine and Children’s Healthcare of Atlanta, GA (M.E.D.); and Cardiovascular Research Center, Icahn School of Medicine, Mount...

Abstract

Rationale : Studies have demonstrated that exosomes can repair cardiac tissue post–myocardial infarction and recapitulate the benefits of cellular therapy. Objective : We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)–derived exosomes in a rat model of ischemia–reperfusion injury. Methods and Results : Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia–reperfusion injury. Echocardiography at day 3 post–myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post–myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. Conclusions : CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3