Endothelium-Derived 5-Methoxytryptophan Is a Circulating Anti-Inflammatory Molecule That Blocks Systemic Inflammation

Author:

Wang Yi-Fu1,Hsu Yu-Juei1,Wu Hsu-Feng1,Lee Guan-Lin1,Yang Ya-Sung1,Wu Jing-Yiing1,Yet Shaw-Fang1,Wu Kenneth K.1,Kuo Cheng-Chin1

Affiliation:

1. From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (Y.-F.W., H.-F.W., G.-L.L., J.-Y.W., S.-F.Y., K.K.W., C.-C.K.); Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan (Y.-F.W.); Division of Nephrology (Y.-J.H.), Division of Infectious Diseases and Tropical Medicine (Y.-S.Y.), Department of Medicine, Tri-Service General Hospital (Y.-J.H., Y.-S.Y.), and Graduate Institutes of Life Sciences and Biochemistry (Y.-J.H., G.-L...

Abstract

Rationale: Systemic inflammation has emerged as a key pathophysiological process that induces multiorgan injury and causes serious human diseases. Endothelium is critical in maintaining cellular and inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. Objective: To identify endothelial cell–released soluble factors that protect against endothelial barrier dysfunction and systemic inflammation. Methods and Results: We found that conditioned medium of endothelial cells inhibited cyclooxgenase-2 and interleukin-6 expression in macrophages stimulated with lipopolysaccharide. Analysis of conditioned medium extracts by liquid chromatography–mass spectrometry showed the presence of 5-methoxytryptophan (5-MTP), but not other related tryptophan metabolites. Furthermore, endothelial cell–derived 5-MTP suppressed lipopolysaccharide-induced inflammatory responses and signaling in macrophages and endotoxemic lung tissues. Lipopolysaccharide suppressed 5-MTP level in endothelial cell-conditioned medium and reduced serum 5-MTP level in the murine sepsis model. Intraperitoneal injection of 5-MTP restored serum 5-MTP accompanied by the inhibition of lipopolysaccharide-induced endothelial leakage and suppression of lipopolysaccharide- or cecal ligation and puncture–mediated proinflammatory mediators overexpression. 5-MTP administration rescued lungs from lipopolysaccharide-induced damages and prevented sepsis-related mortality. Importantly, compared with healthy subjects, serum 5-MTP level in septic patients was decreased by 65%, indicating an important clinical relevance. Conclusions: We conclude that 5-MTP belongs to a novel class of endothelium-derived protective molecules that defend against endothelial barrier dysfunction and excessive systemic inflammatory responses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3