Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury

Author:

Woodall Meryl C.1,Woodall Benjamin P.1,Gao Erhe1,Yuan Ancai1,Koch Walter J.1

Affiliation:

1. From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.).

Abstract

Rationale: G protein–coupled receptor kinase 2 (GRK2) is an important molecule upregulated after myocardial injury and during heart failure. Myocyte-specific GRK2 loss before and after myocardial ischemic injury improves cardiac function and remodeling. The cardiac fibroblast plays an important role in the repair and remodeling events after cardiac ischemia; the importance of GRK2 in these events has not been investigated. Objective: The aim of this study is to elucidate the in vivo implications of deleting GRK2 in the cardiac fibroblast after ischemia/reperfusion injury. Methods and Results: We demonstrate, using Tamoxifen inducible, fibroblast-specific GRK2 knockout mice, that GRK2 loss confers a protective advantage over control mice after myocardial ischemia/reperfusion injury. Fibroblast GRK2 knockout mice presented with decreased infarct size and preserved cardiac function 24 hours post ischemia/reperfusion as demonstrated by increased ejection fraction (59.1±1.8% versus 48.7±1.2% in controls; P <0.01). GRK2 fibroblast knockout mice also had decreased fibrosis and fibrotic gene expression. Importantly, these protective effects correlated with decreased infiltration of neutrophils to the ischemia site and decreased levels of tumor necrosis factor-α expression and secretion in GRK2 fibroblast knockout mice. Conclusions: These novel data showing the benefits of inhibiting GRK2 in the cardiac fibroblast adds to previously published data showing the advantage of GRK2 ablation and reinforces the therapeutic potential of GRK2 inhibition in the heart after myocardial ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3