Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis

Author:

Shu Zhaohui12,Feng Jingyun12,Liu Lanting12,Liao Yingqin12,Cao Yuhong12,Zeng Zhenhua12,Huang Qiuju12,Li Zhonghong12,Jin Guifang1,Yang Zhicheng1,Xing Jieyu1,Zhou Sigui12

Affiliation:

1. School of Pharmacy, GuangDong Pharmaceutical University, GuangZhou, 510006, China

2. Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, GuangZhou,510699, China

Abstract

Cardiac fibrosis is considered as unbalanced extracellular matrix (ECM) production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In-vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for measurement of SCAD expression. In-vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD (Ad-SCAD) were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while Ad-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, α-SMA and collagen expression. In SHR infected with Ad-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. On the other hand, cardiac fibrosis occurred in conventional SCAD knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. All together, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.

Funder

National Natural Science Foundation of China

Special project in key fields of normal university in Guangdong Province

National Key Clinical Specialty Construction Project (Clinical Pharmacy) and High-Level Clinical Key Specialty (Clinical Pharmacy) in Guangdong Province.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3