Multi-Imaging Method to Assay the Contractile Mechanical Output of Micropatterned Human iPSC-Derived Cardiac Myocytes

Author:

Ribeiro Alexandre J.S.1,Schwab Olivier1,Mandegar Mohammad A.1,Ang Yen-Sin1,Conklin Bruce R.1,Srivastava Deepak1,Pruitt Beth L.1

Affiliation:

1. From the Department of Mechanical Engineering (A.J.S.R., O.S., B.L.P.), Department of Molecular and Cellular Physiology (by courtesy) (B.L.P.), Department of Bioengineering (by courtesy) (B.L.P.), and Stanford Cardiovascular Institute (A.J.S.R., B.L.P.), Stanford University, CA; Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.J.S.R., M.A.M., Y.-S.A., B.R.C., D.S.); Roddenberry Stem Cell Center at Gladstone, San Francisco, CA (Y.-S.A., D.S.); Departments of Pediatrics and...

Abstract

Rationale: During each beat, cardiac myocytes (CMs) generate the mechanical output necessary for heart function through contractile mechanisms that involve shortening of sarcomeres along myofibrils. Human-induced pluripotent stem cells (hiPSCs) can be differentiated into CMs (hiPSC-CMs) that model cardiac contractile mechanical output more robustly when micropatterned into physiological shapes. Quantifying the mechanical output of these cells enables us to assay cardiac activity in a dish. Objective: We sought to develop a computational platform that integrates analytic approaches to quantify the mechanical output of single micropatterned hiPSC-CMs from microscopy videos. Methods and Results: We micropatterned single hiPSC-CMs on deformable polyacrylamide substrates containing fluorescent microbeads. We acquired videos of single beating cells, of microbead displacement during contractions, and of fluorescently labeled myofibrils. These videos were independently analyzed to obtain parameters that capture the mechanical output of the imaged single cells. We also developed novel methods to quantify sarcomere length from videos of moving myofibrils and to analyze loss of synchronicity of beating in cells with contractile defects. We tested this computational platform by detecting variations in mechanical output induced by drugs and in cells expressing low levels of myosin-binding protein C. Conclusions: Our method can measure the cardiac function of single micropatterned hiPSC-CMs and determine contractile parameters that can be used to elucidate mechanisms that underlie variations in CM function. This platform will be amenable to future studies of the effects of mutations and drugs on cardiac function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3