Can Pay-for Performance Incentive Levels be Determined Using a Cost-Effectiveness Framework?

Author:

Pandya Ankur12ORCID,Soeteman Djøra I.1,Gupta Ajay3,Kamel Hooman4,Mushlin Alvin I.5,Rosenthal Meredith B.2

Affiliation:

1. Center for Health Decision Science (A.P., D.I.S.), Harvard T.H.

2. Department of Health Policy and Management (A.P., M.B.R.), Harvard T.H.

3. Chan School of Public Health, Boston, MA. Department of Radiology (A.G.), Weill Cornell Medicine, New York, NY.

4. Department of Neurology and Neuroscience (H.K.), Weill Cornell Medicine, New York, NY.

5. Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY (A.I.M.).

Abstract

Background: Healthcare payers in the United States are increasingly tying provider payments to quality and value using pay-for-performance policies. Cost-effectiveness analysis quantifies value in healthcare but is not currently used to design or prioritize pay-for-performance strategies or metrics. Acute ischemic stroke care provides a useful application to demonstrate how simulation modeling can be used to determine cost-effective levels of financial incentives used in pay-for-performance policies and associated challenges with this approach. Methods and Results: Our framework requires a simulation model that can estimate quality-adjusted life years and costs resulting from improvements in a quality metric. A monetary level of incentives can then be back-calculated using the lifetime discounted quality-adjusted life year (which includes effectiveness of quality improvement) and cost (which includes incentive payments and cost offsets from quality improvements) outputs from the model. We applied this framework to an acute ischemic stroke microsimulation model to calculate the difference in population-level net monetary benefit (willingness-to-pay of $50 000 to $150 000/quality-adjusted life year) accrued under current Medicare policy (stroke payment not adjusted for performance) compared with various hypothetical pay-for-performance policies. Performance measurement was based on time-to-thrombolytic treatment with tPA (tissue-type plasminogen activator). Compared with current payment, equivalent population-level net monetary benefit was achieved in pay-for-performance policies with 10-minute door-to-needle time reductions (5057 more acute ischemic stroke cases/y in the 0–3-hour window) incentivized by increasing tPA payment by as much as 18% to 44% depending on willingness-to-pay for health. Conclusions: Cost-effectiveness modeling can be used to determine the upper bound of financial incentives used in pay-for-performance policies, although currently, this approach is limited due to data requirements and modeling assumptions. For tPA payments in acute ischemic stroke, our model-based results suggest financial incentives leading to a 10-minute decrease in door-to-needle time should be implemented but not exceed 18% to 44% of current tPA payment. In general, the optimal level of financial incentives will depend on willingness-to-pay for health and other modeling assumptions around parameter uncertainty and the relationship between quality improvements and long-run quality-adjusted life expectancy and costs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3