Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents.

Author:

Maltsev V A1,Wobus A M1,Rohwedel J1,Bader M1,Hescheler J1

Affiliation:

1. Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Freie Universität Berlin, Germany.

Abstract

Cardiomyocytes differentiated in vitro from pluripotent embryonic stem (ES) cells of line D3 via embryo-like aggregates (embryoid bodies) were characterized by the whole-cell patch-clamp technique during the entire differentiation period. Spontaneously contracting cardiomyocytes were enzymatically isolated by collagenase from embryoid body outgrowths of early, intermediate, and terminal differentiation stages. The early differentiated cardiomyocytes exhibited an outwardly rectifying, transient K+ current sensitive to 4-aminopyridine and an inward Ca2+ current but no Na+ current. The Ca2+ current showed all features of L-type Ca2+ current, being highly sensitive to 1,4-dihydropyridines but not to omega-conotoxin. Cardiomyocytes of intermediate stage were characterized by the additional expression of cardiac-specific Na+ current, the delayed K+ current, and If current. Terminally differentiated cardiomyocytes expressed a Ca2+ channel density about three times higher than that of early stage. In addition, two types of inwardly rectifying K+ currents (IK1 and IK,Ach) and the ATP-modulated K+ current were found. During cardiomyocyte differentiation, several distinct cell populations could be distinguished by their sets of ionic channels and typical action potentials presumably representing cardiac tissues with properties of sinus node, atrium, and ventricle. Reverse transcription polymerase chain reaction revealed the transcription of alpha- and beta-cardiac myosin heavy chain (MHC) genes synchronously with the first spontaneous contractions. Transcription of embryonic skeletal MHC gene at intermediate and terminal differentiation stages correlated with the expression of Na+ channels. The selective expression of alpha-cardiac MHC gene in ES cell-derived cardiomyocytes was demonstrated after ES cell transfection of the LacZ construct driven by the alpha-cardiac MHC promoter region followed by ES cell differentiation and beta-galactosidase staining. In conclusion, our data demonstrate that ES cell-derived cardiomyocytes represent a unique model to investigate the early cardiac development and permit pharmacological/toxicological studies in vitro.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3