Optical approaches to ontogeny of electrical activity and related functional organization during early heart development

Author:

Kamino K.1

Affiliation:

1. Department of Physiology, Tokyo Medical and Dental University School of Medicine, Japan.

Abstract

Direct intracellular measurement of electrical events in the early embryonic heart is impossible because the cells are too small and frail to be impaled with microelectrodes; it is also not possible to apply conventional electrophysiological techniques to the early embryonic heart. For these reasons, complete understanding of the ontogeny of electrical activity and related physiological functions of the heart during early development has been hampered. Optical signals from voltage-sensitive dyes have provided a new powerful tool for monitoring changes in transmembrane voltage in a wide variety of living preparations. With this technique it is possible to make optical recordings from the cells that are inaccessible to microelectrodes. An additional advantage of the optical method for recording membrane potential activity is that electrical activity can be monitored simultaneously from many sites in a preparation. Thus, applying a multiple-site optical recording method with a 100- or 144-element photodiode array and voltage-sensitive dyes, we have been able to monitor, for the first time, spontaneous electrical activity in prefused cardiac primordia in the early chick embryos at the six- and the early seven-somite stages of development. We were able to determine that the time of initiation of the contraction is the middle period of the nine-somite stage. In the rat embryonic heart, the onset of spontaneous electrical activity and contraction occurs at the three-somite stage. In this review, a new view of the ontogenetic sequence of spontaneous electrical activity and related physiological functions such as ionic properties, pacemaker function, conduction, and characteristics of excitation-contraction coupling in the early embryonic heart are discussed.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3