Quantification of Cholesteryl Esters in Human and Rabbit Atherosclerotic Plaques by Magic-Angle Spinning 13 C-NMR

Author:

Peng Shaoqing1,Guo Wen1,Morrisett Joel D.1,Johnstone Michael T.1,Hamilton James A.1

Affiliation:

1. From the Department of Biophysics (S.P., W.G., J.A.H.), Boston University School of Medicine, Boston, Mass; the Departments of Medicine and Biochemistry (J.D.M.), Baylor School of Medicine, Houston, Tex; and the Department of Medicine (M.T.J.), Cardiovascular Division, Beth Israel Medical Center, Boston, Mass.

Abstract

Abstract —Accumulation of cholesteryl esters (CEs) is a key event in the formation of atherosclerotic plaques. More recent work suggests a role for CEs in plaque rupture leading to thrombosis, which can result in an acute event such as myocardial infarction or stroke. In this study, we present nuclear magnetic resonance (NMR) protocols for quantification of CEs in plaques in situ. Total CEs quantified by 13 C magic-angle spinning (MAS) NMR in excised plaques from human carotid arteries and rabbit aortic arteries were in good agreement with the amounts determined by subsequent standard chemical assays. The latter analysis is disadvantageous because it requires that plaque lipids be extracted from the tissue, resulting in the loss of all phase information of CEs as well as other major plaque components. With our MAS-NMR protocol, the plaque components are preserved in their native phases. Combining MAS and off-MAS NMR, we were able to quantitatively distinguish isotropic (liquid) CEs from anisotropic (liquid-crystalline) CEs in plaque tissues. In a recent study, we applied a different 13 C MAS-NMR protocol to quantify crystalline cholesterol monohydrate in plaques. Together, these 2 studies describe a new, noninvasive MAS-NMR strategy for the identification and quantification of the major lipid components in plaques in situ. This approach will be useful for investigation of the relationship between plaque rupture and specific lipids in their biologically relevant phases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3