Abstract
Abstract
Background
Atherosclerosis is an arterial vessel wall disease characterized by slow, progressive lipid accumulation, smooth muscle disorganization, and inflammatory infiltration. Atherosclerosis often remains subclinical until extensive inflammatory injury promotes vulnerability of the atherosclerotic plaque to rupture with luminal thrombosis, which can cause the acute event of myocardial infarction or stroke. Current bioimaging techniques are unable to capture the pathognomonic distribution of cellular elements of the plaque and thus cannot accurately define its structural disorganization.
Methods
We applied cardiovascular magnetic resonance spectroscopy (CMRS) and diffusion weighted CMR (DWI) with generalized Q-space imaging (GQI) analysis to architecturally define features of atheroma and correlated these to the microscopic distribution of vascular smooth muscle cells (SMC), immune cells, extracellular matrix (ECM) fibers, thrombus, and cholesteryl esters (CE). We compared rabbits with normal chow diet and cholesterol-fed rabbits with endothelial balloon injury, which accelerates atherosclerosis and produces advanced rupture-prone plaques, in a well-validated rabbit model of human atherosclerosis.
Results
Our methods revealed new structural properties of advanced atherosclerosis incorporating SMC and lipid distributions. GQI with tractography portrayed the locations of these components across the atherosclerotic vessel wall and differentiated multi-level organization of normal, pro-inflammatory cellular phenotypes, or thrombus. Moreover, the locations of CE were differentiated from cellular constituents by their higher restrictive diffusion properties, which permitted chemical confirmation of CE by high field voxel-guided CMRS.
Conclusions
GQI with tractography is a new method for atherosclerosis imaging that defines a pathological architectural signature for the atheromatous plaque composed of distributed SMC, ECM, inflammatory cells, and thrombus and lipid. This provides a detailed transmural map of normal and inflamed vessel walls in the setting of atherosclerosis that has not been previously achieved using traditional CMR techniques. Although this is an ex-vivo study, detection of micro and mesoscale level vascular destabilization as enabled by GQI with tractography could increase the accuracy of diagnosis and assessment of treatment outcomes in individuals with atherosclerosis.
Funder
National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology