Respiratory Uncoupling Lowers Blood Pressure Through a Leptin-Dependent Mechanism in Genetically Obese Mice

Author:

Bernal-Mizrachi Carlos1,Weng Sherry1,Li Bing1,Nolte Lorraine A.1,Feng Chu1,Coleman Trey1,Holloszy John O.1,Semenkovich Clay F.1

Affiliation:

1. From the Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Mo.

Abstract

Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance-related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in skeletal muscle with lethal yellow (A y /a) mice, genetically obese animals known to have elevated blood pressure. Despite increased food intake, UCP-A y /a mice weighed less than their A y /a littermates. The metabolic rate was higher in UCP-A y /a mice than in A y /a mice and did not impair their ability to alter oxygen consumption in response to temperature changes, an adaptation involving sympathetic nervous system activity. Compared with their nontransgenic littermates, UCP-A y /a mice had lower fasting insulin, glucose, triglyceride, and cholesterol levels and were more insulin sensitive. Blood pressure, serum leptin, and urinary catecholamine levels were also lower in uncoupled mice. Independent of sympathetic nervous system activity, low-dose peripheral leptin infusion increased blood pressure in UCP-A y /a mice but not in their A y /a littermates. These data indicate that skeletal muscle respiratory uncoupling reverses insulin resistance and lowers blood pressure in genetic obesity without affecting thermoregulation. The data also suggest that uncoupling could decrease the risk of atherosclerosis in type 2 diabetes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3