Fibroblast Growth Factor-2, But Not Vascular Endothelial Growth Factor, Upregulates Telomerase Activity in Human Endothelial Cells

Author:

Kurz David J.1,Hong Ying1,Trivier Elizabeth1,Huang Hsiu-Lin1,Decary Stephanie1,Zang Guo Hong1,Lüscher Thomas F.1,Erusalimsky Jorge D.1

Affiliation:

1. From the Cell Biology Group (D.J.K., Y.H., E.T., H.-L.H., S.D., G.H.Z., J.D.E.), British Heart Foundation Laboratories, Department of Medicine, University College London, London, UK, and Department of Cardiovascular Research (D.J.K., T.F.L.), Institute of Physiology, University of Zurich, and Department of Cardiology, University Hospital, Zurich, Switzerland.

Abstract

Objective— Telomerase plays a major role in the control of replicative capacity, a critical property for successful angiogenesis and maintenance of endothelial integrity. In this study, we examined the relationship between telomerase activity and endothelial cell proliferation as well as the regulation of this enzyme by fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF). Methods and Results— Telomerase was repressed in endothelial cells freshly derived from intact endothelium, whereas activity was present during logarithmic growth in culture. In cultured human umbilical vein endothelial cells (HUVECs), mRNA levels of hTERT—the catalytic subunit of telomerase—and enzyme activity decreased reversibly on induction of quiescence. Treatment of quiescent HUVECs with FGF-2 restored telomerase activity in a time- and dose-dependent manner, whereas VEGF had no such effect, although both factors induced comparable mitogenic responses. FGF-2, but not VEGF, upregulated the mRNA levels for hTERT and for the hTERT gene transactivation factor Sp1. Serial passage in the presence of individual growth factors accelerated the accumulation of senescent cells in VEGF-treated cultures compared with cultures treated with FGF-2. Conclusions— FGF-2, but not VEGF, restores telomerase activity and maintains the replicative capacity of endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3