TIMELESS is a key gene mediating thrombogenesis in COVID-19 and antiphospholipid syndrome

Author:

Zhang Wenjing,Di Longjiang,Liu Zhongshuang,sun Qi,Wu Yan,Wang Nuan,Jin Meili,Gao Lingling,Zhang Mengyu

Abstract

AbstractAbnormal coagulation and increased risk of thrombosis are some of the symptoms associated with COVID-19 severity. Anti-phospholipid antibodies (aPLs) present in critically ill COVID-19 patients contribute to systemic thrombosis. The aim of this study was to identify key common genes to characterize genetic crosstalk between COVID-19 and antiphospholipid syndrome (APS) using bioinformatics analysis and explore novel mechanisms of immune-mediated thrombosis in critically ill COVID-19 patients. The transcriptome data of mononuclear cells from severe COVID-19 patients and APS patients were evaluated to obtain the common genes. The protein–protein interaction network and cytoHubba module analysis in Cytoscape software were used to find the associated hinge genes and hub genes. Among the common differentially expressed genes, TIMELESS depletion was identified only in patients with severe COVID-19 and not in patients with mild COVID-19, and it was validated with the GSE159678 dataset. Functional analyses using gene ontology terms and the Kyoto Encyclopedia of Genes and Genomes pathway suggested that TIMELESS might contribute to the production of antiphospholipid antibody and thrombosis in both COVID-19 and APS patients. The potential role of TIMELESS and autophagy genes in momonuclear cells were further investigated, and GSK3B was found to be associated with TIMELESS. Autophagy targeting agents have a therapeutic potential against COVID-19 and thrombogenesis in APS, which may be related to the role of autophagy genes in the modification of circadian clock proteins. Interference with TIMELESS and other genes associated with it to regulate autoantibody expression may be a potential strategy for immunotherapy against thrombogenesis in severe COVID-19 patients.

Funder

National Natural Science Foundation of China

Health and Family Planning Commission of Heilongjiang Provincial

The Fundamental Research Funds for the Provincial Universities

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3