Integration of risk variants from GWAS with SARS-CoV-2 RNA interactome prioritizes FUBP1 and RAB2A as risk genes for COVID-19

Author:

Shi Weiwen,Chen Mengke,Pan Tingting,Chen Mengjie,Cheng Yongjun,Hao Yimei,Chen Sheng,Tang Yuanjia

Abstract

AbstractThe role of host genetic factors in COVID-19 outcomes remains unclear despite various genome-wide association studies (GWAS). We annotate all significant variants and those variants in high LD (R2 > 0.8) from the COVID-19 host genetics initiative (HGI) and identify risk genes by recognizing genes intolerant nonsynonymous mutations in coding regions and genes associated with cis-expression quantitative trait loci (cis-eQTL) in non-coding regions. These genes are enriched in the immune response pathway and viral life cycle. It has been found that host RNA binding proteins (RBPs) participate in different phases of the SARS-CoV-2 life cycle. We collect 503 RBPs that interact with SARS-CoV-2 RNA concluded from in vitro studies. Combining risk genes from the HGI with RBPs, we identify two COVID-19 risk loci that regulate the expression levels of FUBP1 and RAB2A in the lung. Due to the risk allele, COVID-19 patients show downregulation of FUBP1 and upregulation of RAB2A. Using single-cell RNA sequencing data, we show that FUBP1 and RAB2A are expressed in SARS-CoV-2-infected upper respiratory tract epithelial cells. We further identify NC_000001.11:g.77984833C>A and NC_000008.11:g.60559280T>C as functional variants by surveying allele-specific transcription factor sites and cis-regulatory elements and performing motif analysis. To sum up, our research, which associates human genetics with expression levels of RBPs, identifies FUBP1 and RAB2A as two risk genes for COVID-19 and reveals the anti-viral role of FUBP1 and the pro-viral role of RAB2A in the infection of SARS-CoV-2.

Funder

National Natural Science Foundation of China

the innovative research team of high-level local universities in Shanghai

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3