Remnant Lipoproteins Induce Proatherothrombogenic Molecules in Endothelial Cells Through a Redox-Sensitive Mechanism

Author:

Doi Hideki1,Kugiyama Kiyotaka1,Oka Hideki1,Sugiyama Seigo1,Ogata Nobuhiko1,Koide Shun-ichi1,Nakamura Shin-ichi1,Yasue Hirofumi1

Affiliation:

1. From the Department of Cardiovascular Medicine, Kumamoto University School of Medicine, Kumamoto City, Japan.

Abstract

Background —Triglyceride-rich lipoproteins (TGLs) are atherogenic. However, their cellular mechanisms remain largely unexplained. This study examined the effects of isolated remnant-like lipoprotein particles (RLPs) on the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and tissue factor (TF), proatherothrombogenic molecules, in cultured human endothelial cells. Methods and Results —RLPs were isolated from plasma of hypertriglyceridemic patients by use of the immunoaffinity gel mixture of anti–apoA-1 and anti–apoB-100 monoclonal antibodies. The incubation of cells with RLPs significantly upregulated mRNA and protein expression of these molecules. Total TGLs ( d <1.006) and LDL had fewer or minimal effects on expression of these molecules compared with RLPs. RLPs increased intracellular oxidant levels, as assessed with an oxidant-sensitive probe. Combined incubation with α-tocopherol or N -acetylcysteine, both antioxidants, suppressed RLP-induced increase in expression of these molecules. In patients with higher plasma levels of RLPs, plasma levels of soluble forms of ICAM-1 and VCAM-1 were significantly higher than in patients with lower RLP levels. Treatment with α-tocopherol for 1 month decreased levels of the soluble adhesion molecules concomitantly with an increase in resistance of RLPs to oxidative modification in patients with high RLP levels. Conclusions —RLPs upregulated endothelial expression of ICAM-1, VCAM-1, and TF, proatherothrombogenic molecules, partly through a redox-sensitive mechanism. RLPs may have an important role in atherothrombotic complications in hypertriglyceridemic patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3