Adenoviral Gene Transfer of Activated Phosphatidylinositol 3′-Kinase and Akt Inhibits Apoptosis of Hypoxic Cardiomyocytes In Vitro

Author:

Matsui Takashi1,Li Ling1,Federica del Monte 1,Fukui Yasuhisa1,Franke Thomas F.1,Hajjar Roger J.1,Rosenzweig Anthony1

Affiliation:

1. From the Cardiovascular Research Center and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (T.M., L.L., F.d.M., R.J.H., A.R.); the Department of Pharmacology, Columbia University, New York, NY (T.F.F.); and the Laboratory of Biological Chemistry, University of Tokyo, Japan (Y.F.).

Abstract

Background —The intracellular signaling pathways that control cardiomyocyte apoptosis have not been fully defined. Because insulin-like growth factor-1 (IGF-1) prevents cardiomyocyte apoptosis, we examined the role of its downstream signaling molecules in an in vitro model of hypoxia-induced cardiomyocyte apoptosis. Methods and Results —Treatment of rat neonatal cardiomyocytes with IGF-1 increased activity of both phosphatidylinositol 3′ (PI 3)-kinase and its downstream target, Akt (also known as protein kinase B or PKB). Cardiomyocytes were subjected to hypoxia for 24 hours, and apoptosis was assessed by DNA laddering, TUNEL staining, and ELISA for histone-associated DNA fragments. IGF-1 treatment (100 nmol/L) reduced cardiomyocyte apoptosis, and this effect was inhibited by simultaneous treatment with a PI 3-kinase inhibitor. Cardiomyocytes were infected with either a control adenovirus (Ad.EGFP) or adenoviruses carrying constitutively active forms of PI 3-kinase (Ad.BD110) or Akt (Ad.myr-Akt-HA). Ad.BD110 significantly inhibited apoptosis of hypoxic cardiomyocytes compared with Ad.EGFP (61.0±4.6% less DNA fragmentation than in Ad.EGFP-infected cells, P <0.0001). Ad.myr-Akt-HA even more dramatically inhibited apoptosis of hypoxic cardiomyocytes (90.9±1.4% less DNA fragmentation than in controls, P <0.0001). Conclusions —IGF-1 activates PI 3-kinase and Akt in cardiomyocytes. Activated PI 3-kinase and Akt are each sufficient to protect hypoxic cardiomyocytes against apoptosis in vitro. Adenoviral gene transfer provides a useful tool for investigating the role of these signaling pathways in cardiomyocyte apoptosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3