Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation

Author:

Milliken Alexander S.1ORCID,Nadtochiy Sergiy M.2,Brookes Paul S.2ORCID

Affiliation:

1. Department of Pharmacology and Physiology University of Rochester Medical Center Rochester NY

2. Department of Anesthesiology and Perioperative Medicine University of Rochester Medical Center Rochester NY

Abstract

Background The metabolite succinate accumulates during cardiac ischemia. Within 5 minutes of reperfusion, succinate returns to baseline levels via both its release from cells and oxidation by mitochondrial complex II. The latter drives reactive oxygen species (ROS) generation and subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically beneficial in cardiac ischemia–reperfusion (IR) injury. It has been proposed that blocking MCT1 (monocarboxylate transporter 1) may be beneficial in IR injury, by preventing succinate release and subsequent engagement of downstream inflammatory signaling pathways. In contrast, herein we hypothesized that blocking MCT1 would retain succinate in cells, exacerbating ROS generation and IR injury. Methods and Results Using the mitochondrial ROS probe mitoSOX and a custom‐built murine heart perfusion rig built into a spectrofluorometer, we measured ROS generation in situ during the first moments of reperfusion. We found that acute MCT1 inhibition enhanced mitochondrial ROS generation at reperfusion and worsened IR injury (recovery of function and infarct size). Both of these effects were abrogated by tandem inhibition of mitochondrial complex II, suggesting that succinate retention worsens IR because it drives more mitochondrial ROS generation. Furthermore, using the PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial membrane potential indicator tetramethylrhodamine ethyl ester, we herein provide evidence that ROS generation during early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, pore opening was exacerbated by MCT1 inhibition. Conclusions Together, these findings highlight the importance of succinate dynamics and mitochondrial ROS generation as key determinants of PT pore opening and IR injury outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3