Affiliation:
1. Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College Beijing China
2. Key Laboratory of Clinical Research for Cardiovascular Medications, National Health Committee Beijing China
Abstract
Background
Machine‐learning‐based prediction models (MLBPMs) have shown satisfactory performance in predicting clinical outcomes in patients with heart failure with reduced and preserved ejection fraction. However, their usefulness has yet to be fully elucidated in patients with heart failure with mildly reduced ejection fraction. This pilot study aims to evaluate the prediction performance of MLBPMs in a heart failure with mildly reduced ejection fraction cohort with long‐term follow‐up data.
Methods and Results
A total of 424 patients with heart failure with mildly reduced ejection fraction were enrolled in our study. The primary outcome was all‐cause mortality. Two feature selection strategies were introduced for MLBPM development. The “All‐in” (67 features) strategy was based on feature correlation, multicollinearity, and clinical significance. The other strategy was the CoxBoost algorithm with 10‐fold cross‐validation (17 features), which was based on the selection result of the “All‐in” strategy. Six MLBPMs with 5‐fold cross‐validation based on the “All‐in” and the CoxBoost algorithm with 10‐fold cross‐validation strategy were developed by the eXtreme Gradient Boosting, random forest, and support vector machine algorithms. The logistic regression model with 14 benchmark predictors was used as a reference model. During a median follow‐up of 1008 (750, 1937) days, 121 patients met the primary outcome. Overall, MLBPMs outperformed the logistic model. The “All‐in” eXtreme Gradient Boosting model had the best performance, with an accuracy of 85.4% and a precision of 70.3%. The area under the receiver‐operating characteristic curve was 0.916 (95% CI, 0.887–0.945). The Brier score was 0.12.
Conclusions
The MLBPMs could significantly improve outcome prediction in patients with heart failure with mildly reduced ejection fraction, which would further optimize the management of these patients.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献