The Efficacy of Machine Learning Models for Predicting the Prognosis of Heart Failure: A Systematic Review and Meta-Analysis

Author:

Xu ZhaohuiORCID,Hu YinqinORCID,Shao Xinyi,Shi TianyunORCID,Yang Jiahui,Wan QiqiORCID,Liu YongmingORCID

Abstract

<b><i>Introduction:</i></b> Heart failure (HF) is a major global public health concern. The application of machine learning (ML) to identify individuals at high risk and enable early intervention is a promising approach for improving HF prognosis. We aim to systematically evaluate the performance and value of ML models for predicting HF prognosis. <b><i>Methods:</i></b> PubMed, Web of Science, Scopus, and Embase online databases were searched up to April 30, 2023, to identify studies on the use of ML models to predict HF prognosis. HF prognosis primarily encompasses readmission and mortality. The meta-analysis was conducted by <i>MedCalc</i> software. Subgroup analyses include grouping based on types of ML models, time intervals, sample sizes, the number of predictive variables, validation methods, whether to conduct hyperparameter optimization and calibration, data set partitioning methods. <b><i>Results:</i></b> A total of 31 studies were included. The most common ML models were random forest, boosting, support vector machine, neural network. The area under the receiver operating characteristic curve (AUC) for predicting HF readmission was 0.675 (95% CI: 0.651–0.699, <i>p</i> &lt; 0.001), and the AUC for predicting HF mortality was 0.790 (95% CI: 0.765–0.816, <i>p</i> &lt; 0.001). Subgroup analyses revealed that models with the prediction time interval of 1 year, sample sizes ≥10,000, the number of predictive variables ≥100, external validation, hyperparameter tuning, calibration adjustment, and data set partitioning using 10-fold cross-validation exhibited favorable performance within their respective subgroups. <b><i>Conclusion:</i></b> The performance of ML models in predicting HF readmission is relatively poor, while its performance in predicting HF mortality is moderate. The quality of the relevant studies is generally low, it is essential to enhance the predictive capabilities of ML models through targeted improvements in practical applications.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3