Flow Cytometric Analysis of Inflammatory Cells in Ischemic Rat Brain

Author:

Campanella Marilena1,Sciorati Clara1,Tarozzo Glauco1,Beltramo Massimiliano1

Affiliation:

1. From the Schering-Plough Research Institute, Milan, Italy.

Abstract

Background and Purpose Inflammation plays a key role in cerebral ischemia through activation of microglia and infiltration by leukocytes. Flow cytometry is a well-established method for quantitative and qualitative analysis of inflammatory cells. However, this technique has not been applied to the study of cerebral ischemia inflammation. The aim of this study was to establish a flow cytometric method to measure inflammatory cells in ischemic brain. Methods To perform flow cytometry on brain tissue, we developed 2 cell-isolation methods based on different mechanical dissociation and Percoll gradient separation techniques. The methods were tested on a rat model of permanent middle cerebral artery occlusion. Morphological and immunophenotypic analyses, with the use of anti-CD11b, anti-CD45, and αβ T-cell receptor antibodies, were employed to identify and quantify inflammatory cells. Results Both methods gave consistent results in terms of yield and reproducibility. The cell suspension contained granulocytes, macrophages, lymphocytes, and neural cells. Morphological and immunophenotypic analyses enabled the identification of a cell-scatter gate (R1a) enriched in inflammatory cells. With both methods, a higher number of events in R1a were recorded in the ischemic hemisphere than in the nonischemic hemisphere ( P ≤0.001). CD11b, CD45, and αβ T-cell receptor staining confirmed that this augmentation was a reflection of the increase in the number of granulocytes, cells of the monocytic lineage, and lymphocytes. Conclusions Quantitative flow cytometric analysis of ischemic rat brain is feasible and provides a reliable and rapid assay to assess neuroinflammation in experimental models of brain ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3