Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice

Author:

Tai Shih-Huang1,Chao Liang-Chun1,Huang Sheng-Yang1,Lin Hsiao-Wen1,Lee Ai-Hua1,Chen Yi-Yun1,Lee E-Jian1ORCID

Affiliation:

1. Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan

Abstract

(1) Background: Inducing experimental stroke leads to biphasic immune responses, where the early activation of immune functions is followed by severe immunosuppression accompanied by spleen and thymus atrophy. Nicotinamide, a water-soluble B-group vitamin, is a known neuroprotectant against brain ischemia in animal models. We examined the effect of nicotinamide on the central and peripheral immune response in experimental stroke models. (2) Methods: Nicotinamide (500 mg/kg) or saline was intravenously administered to C57BL/6 mice during reperfusion after transiently occluding the middle cerebral artery or after LPS injection. On day 3, the animals were examined for behavioral performance and were then sacrificed to assess brain infarction, blood–brain barrier (BBB) integrity, and the composition of immune cells in the brain, thymus, spleen, and blood using flow cytometry. (3) Results: Nicotinamide reduced brain infarction and microglia/macrophage activation following MCAo (p < 0.05). Similarly, in LPS-injected mice, microglia/macrophage activation was decreased upon treatment with nicotinamide (p < 0.05), suggesting a direct inhibitory effect of nicotinamide on microglia/macrophage activation. Nicotinamide decreased the infiltration of neutrophils into the brain parenchyma and ameliorated Evans blue leakage (p < 0.05), suggesting that a decreased infiltration of neutrophils could, at least partially, be the result of a more integrated BBB structure following nicotinamide treatment. Our studies also revealed that administering nicotinamide led to retarded B-cell maturation in the spleen and subsequently decreased circulating B cells in the thymus and bloodstream (p < 0.05). (4) Conclusions: Cumulatively, nicotinamide decreased brain inflammation caused by ischemia–reperfusion injury, which was mediated by a direct anti-inflammatory effect of nicotinamide and an indirect protective effect on BBB integrity. Administering nicotinamide following brain ischemia resulted in a decrease in circulating B cells. This warrants attention with respect to future clinical applications.

Funder

National Science Council (NSC) of Taiwan

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3