Mouse Model of Cerebral Aneurysm

Author:

Morimoto Masafumi1,Miyamoto Susumu1,Mizoguchi Akira1,Kume Noriaki1,Kita Toru1,Hashimoto Nobuo1

Affiliation:

1. From the Departments of Neurosurgery (M.M., S.M., N.H.), Geriatric Medicine (N.K., T.K.), and Anatomy (A.M.), Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Abstract

Background and Purpose Rupture of cerebral aneurysm (CA) is the major cause of subarachnoid hemorrhage. Molecular mechanisms of this disease, however, remain unknown. To make possible genetic analysis of CA formation with genetically altered mice, we have successfully established a mouse model of saccular CA that recapitulates the essential features of human saccular CA. Methods In C57black/6 male mice, various stages of CAs were experimentally induced at the right anterior cerebral artery–olfactory artery bifurcations by ligations of left common carotid arteries and posterior branches of bilateral renal arteries with high salt diet. Both light and electron microscopic studies were performed with the longitudinal sections of anterior cerebral artery–olfactory artery bifurcations. Results In the treated group, various aneurysmal changes were detected in 14 of 18 mice. On the other hand, in the control group, no aneurysmal changes were found in 15 mice. In microscopic studies, aneurysmal changes were shown to include mainly fragmentation of internal elastic lamina, thinning of the smooth muscle cell layer, and degeneration of adventitial tissue, which were very similar to critical changes in human saccular CA. Conclusions This mouse model of CA will be useful for studying the effects of complex determinants on CA formation and makes it possible to understand the pathogenesis of CA at the molecular level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3