Author:
Uraizee A,Reimer K A,Murry C E,Jennings R B
Abstract
Reactive oxygen species such as the superoxide anion (.O2-) have recently been implicated as important agents involved in causing cell death in the setting of myocardial ischemia and reperfusion. When superoxide anion is involved in ischemic injury the administration of superoxide dismutase (SOD) may limit infarct size by reducing the level of superoxide anions in the myocardium. The study described herein was done to determine whether SOD could limit myocardial infarct size when infarcts were produced in dogs by a 40 min occlusion of the circumflex coronary artery followed by 4 days of reperfusion. The animals in the SOD treatment group received a 1 hr intra-atrial infusion of SOD, at a rate of 250 U/kg/min starting 15 min after occlusion and ending 35 min after reperfusion; control dogs received a saline infusion over the same time frame. Infarct size was determined histologically and expressed as a percentage of the anatomic area at risk (AAR). Infarct size was similar in the two groups, averaging 26.2 +/- 2.5% in the control group (n = 10) and 21.1 +/- 4.8% in the SOD group (n = 11) (p = .40). Hemodynamic variables were not statistically different in the two groups during the occlusion. The transmural mean collateral blood flow at 10 min into the 40 min occlusion was 0.13 +/- 0.02 ml/min/g in the controls and 0.17 +/- 0.03 ml/min/g in the SOD group (p = NS); moreover, SOD did not alter collateral blood flow. In control dogs, infarct size was inversely related to collateral blood flow; analysis of covariance showed that SOD did not shift this relationship. Thus, SOD did not limit infarct size in this study. The results of the current study are consistent with our previous study in which allopurinol, a xanthine oxidase inhibitor, did not limit infarct size in this same experimental preparation. The results suggest that superoxide anions that are accessible to the infused SOD are not a major cause of myocyte death caused by 40 min of severe ischemia followed by reperfusion.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
228 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献