Quantitative ultrasonic tissue characterization with real-time integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy.

Author:

Vered Z1,Barzilai B1,Mohr G A1,Thomas L J1,Genton R1,Sobel B E1,Shoup T A1,Melton H E1,Miller J G1,Pérez J E1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.

Abstract

We have shown previously that the physical properties of myocardium in dogs can be characterized with quantitative ultrasonic integrated backscatter and that interrogation of the tissue with ultrasound can delineate cardiac cycle-dependent changes in ultrasonic backscatter in normal tissue that disappear with ischemia and reappear with reperfusion if functional integrity is restorable. To determine whether this approach can be applied to man, we implemented an automatic gain compensation and continuous data acquisition system to characterize myocardium with quantitative ultrasonic backscatter and to detect cardiac cycle-dependent changes in real time. We developed a two-dimensional echocardiographic system with quantitative integrated backscatter imaging capabilities for use in human subjects that can automatically differentiate ultrasonic signals from blood as opposed to those obtained from tissue and adjust the slope of the gain compensation appropriately. Real-time images were formed from a continuous signal proportional to the logarithm of the integrated backscatter along each A-line. In our initial investigation, 15 normal volunteers (ages 17 to 40 years, heart rates 44 to 88 beats/min) and five patients with dilated cardiomyopathy (ages 22 to 52, heart rates 82 to 120 beats/min) were studied with conventional parasternal long-axis echocardiographic views. Diastolic-to-systolic variation of integrated backscatter in the interventricular septum and left ventricular posterior wall was seen in each of the normal subjects averaging 4.6 +/- 1.4 dB (SD) and 5.3 +/- 1.5 dB (n = 127 sites), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3