Author:
Romano Minna Moreira Dias,Pazin-Filho Antônio,O’Connel João Lucas,Simões Marcus Vinícius,Schmidt André,Campos Érica C,Rossi Marcos,Maciel Benedito Carlos
Abstract
AbstractIn the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/ phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29±0.27 x 1.1±0.26-basal; p=0.005) and MCV decreased (9.1± 2.8 x 11.02±2.6-basal; p=0.006) from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4±6.9% x 85.3±6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine
Reference29 articles.
1. Steinherz LJ, Graham T, Hurwitz R, Sondheimer HM, Schwartz RG, Shaffer EM, et al.: Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Childrens Cancer Study Group. Pediatrics. 1992, 89 (5 Pt 1): 942-949.
2. Shan K, Lincoff AM, Young JB: Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996, 125 (1): 47-58.
3. Hoit BD: Detection of myocardial dysfunction during cancer chemotherapy with tissue Doppler imaging: a canary in the coal mine?. J Am Soc Echocardiogr. 2009, 22 (4): 425-426. 10.1016/j.echo.2009.02.010
4. Nicolosi GL, Lestuzzi C, Pavan D, Dall'Aglio V, Mimo R, Breda M, et al.: Qualitative ultrasonic tissue characterization of the myocardium. J Nucl Med Allied Sci. 1988, 32 (3): 139-148.
5. Tatsukawa H, Furukawa K, Katsume H, Kosugi Y, Azuma A, Inoue N, et al.: [Ultrasonic tissue characterization by spectral analysis of myocardial textural pattern]. J Cardiol. 1989, 19 (2): 563-570.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献