Affiliation:
1. From the Divisions of Cardiovascular (M.R.A., L.J.O., B.D.J.) and Thoracic (K.C.B.) Diseases and Hypertension (S.T.T.), and the Department of Anesthesiology (M.J.J.), Mayo Clinic and Foundation, Rochester, Minn.
Abstract
Background—
The gene encoding ACE exhibits an insertion/deletion polymorphism resulting in 3 genotypes (DD, ID, and II), which affects serum and tissue ACE activity as well as other vasoactive substances. Pulmonary function is frequently abnormal in patients with congestive heart failure (CHF), the mechanism of which has not been completely characterized. ACE inhibition has been shown to improve diffusion across the alveolar-capillary membrane and to improve exercise capacity and gas exchange in CHF. The aim of the current study was to determine if ACE genotype is associated with altered pulmonary function and exercise intolerance in patients with treated CHF.
Methods and Results—
Fifty-seven patients (stratified according to ACE genotype as17 DD, 28 ID, 12 II) with ischemic and dilated cardiomyopathy, left ventricular ejection fraction (LVEF) <35%, and <10 pack-years of smoking history were studied. All patients were receiving standard therapy for left ventricular systolic dysfunction. Pulmonary function, LVEF, serum ACE, plasma angiotensin II, atrial natriuretic peptide, and brain natriuretic peptide were measured at baseline. Peak V̇
o
2
and gas exchange measurements were assessed with graded exercise. Resting LVEF was similar among the genotype groups (25% to 28%), and no differences were observed in diastolic function or pulmonary artery pressures (
P
>0.05). Mean peak V̇
o
2
and forced vital capacity (% Pred) were significantly reduced (
P
<0.05), whereas mean serum ACE activity and plasma angiotensin II concentration were highest in DD homozygotes. Subjects homozygous for the D-allele also demonstrated higher mean ventilatory equivalents for carbon dioxide (V̇
e
/V̇
co
2
) during exercise (
P
<0.05).
Conclusions—
ACE DD genotype is associated with decreased exercise tolerance in CHF, possibly mediated by altered pulmonary function. Pharmacological strategies effecting more complete inhibition of serum and tissue ACE and/or potentiation of bradykinin may improve exercise capacity in patients with CHF and ACE DD genotype.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献