Responses to incremental exercise and the impact of the coexistence of HF and COPD on exercise capacity: a follow-up study

Author:

Dos Santos Polliana B.,Simões Rodrigo P.,Goulart Cássia L.,Arêas Guilherme Peixoto Tinoco,Marinho Renan S.,Camargo Patrícia F.,Roscani Meliza G.,Arbex Renata F.,Oliveira Claudio R.,Mendes Renata G.,Arena Ross,Borghi-Silva Audrey

Abstract

AbstractOur aim was to evaluate: (1) the prevalence of coexistence of heart failure (HF) and chronic obstructive pulmonary disease (COPD) in the studied patients; (2) the impact of HF + COPD on exercise performance and contrasting exercise responses in patients with only a diagnosis of HF or COPD; and (3) the relationship between clinical characteristics and measures of cardiorespiratory fitness; (4) verify the occurrence of cardiopulmonary events in the follow-up period of up to 24 months years. The current study included 124 patients (HF: 46, COPD: 53 and HF + COPD: 25) that performed advanced pulmonary function tests, echocardiography, analysis of body composition by bioimpedance and symptom-limited incremental cardiopulmonary exercise testing (CPET) on a cycle ergometer. Key CPET variables were calculated for all patients as previously described. The $${\dot{\text{V}}}$$ V ˙ E/$${\dot{\text{V}}}$$ V ˙ CO2 slope was obtained through linear regression analysis. Additionally, the linear relationship between oxygen uptake and the log transformation of $${\dot{\text{V}}}$$ V ˙ E (OUES) was calculated using the following equation: $${\dot{\text{V}}}$$ V ˙ O2 = a log $${\dot{\text{V}}}$$ V ˙ E + b, with the constant ‘a’ referring to the rate of increase of $${\dot{\text{V}}}$$ V ˙ O2. Circulatory power (CP) was obtained through the product of peak $${\dot{\text{V}}}$$ V ˙ O2 and peak systolic blood pressure and Ventilatory Power (VP) was calculated by dividing peak systolic blood pressure by the $${\dot{\text{V}}}$$ V ˙ E/$${\dot{\text{V}}}$$ V ˙ CO2 slope. After the CPET, all patients were contacted by telephone every 6 months (6, 12, 18, 24) and questioned about exacerbations, hospitalizations for cardiopulmonary causes and death. We found a 20% prevalence of HF + COPD overlap in the studied patients. The COPD and HF + COPD groups were older (HF: 60 ± 8, COPD: 65 ± 7, HF + COPD: 68 ± 7). In relation to cardiac function, as expected, patients with COPD presented preserved ejection fraction (HF: 40 ± 7, COPD: 70 ± 8, HF + COPD: 38 ± 8) while in the HF and HF + COPD demonstrated similar levels of systolic dysfunction. The COPD and HF + COPD patients showed evidence of an obstructive ventilatory disorder confirmed by the value of %FEV1 (HF: 84 ± 20, COPD: 54 ± 21, HF + COPD: 65 ± 25). Patients with HF + COPD demonstrated a lower work rate (WR), peak oxygen uptake ($${\dot{\text{V}}}$$ V ˙ O2), rate pressure product (RPP), CP and VP compared to those only diagnosed with HF and COPD. In addition, significant correlations were observed between lean mass and peak $${\dot{\text{V}}}$$ V ˙ O2 (r: 0.56 p < 0.001), OUES (r: 0.42 p < 0.001), and O2 pulse (r: 0.58 p < 0.001), lung diffusing factor for carbon monoxide (DLCO) and WR (r: 0.51 p < 0.001), DLCO and VP (r: 0.40 p: 0.002), forced expiratory volume in first second (FEV1) and peak $${\dot{\text{V}}}$$ V ˙ O2 (r: 0.52; p < 0.001), and FEV1 and WR (r: 0.62; p < 0.001). There were no significant differences in the occurrence of events and deaths contrasting both groups. The coexistence of HF + COPD induces greater impairment on exercise performance when compared to patients without overlapping diseases, however the overlap of the two diseases did not increase the probability of the occurrence of cardiopulmonary events and deaths when compared to groups with isolated diseases in the period studied. CPET provides important information to guide effective strategies for these patients with the goal of improving exercise performance and functional capacity. Moreover, given our findings related to pulmonary function, body composition and exercise responses, evidenced that the lean mass, FEV1 and DLCO influence important responses to exercise.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3